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Abstract 
 
This paper presents a numerical model to predict the volume change in an expansive 
soil as a result of vegetation and environmental changes. The model formulation is 
based on the general theory of unsaturated soil behavior. Three typical volume 
change situations associated with water uptake by tree roots and water infiltration 
into soils due to watering at surface are presented.  
 
Introduction 
 
Small buildings constructed in expansive soils are often subjected to severe distress 
subsequent to construction, as a result of changes in the surrounding environment. 
Changes in the environment may occur as a result of water uptake by vegetation, 
removal of vegetation and the excessive watering of a lawn. The magnitude of 
damage to an engineering structure caused by vegetation depends on a series of 
factors, which includes type of vegetation, soil and groundwater conditions, climate, 
foundation types and the distance from vegetation. 

Many methods of volume change prediction have been proposed. The 
methods of volume change prediction are based either on soil suction measurements 
(or estimations) or on one-dimensional oedometer tests. Problems in engineering 
practice related to volume change and heave, are generally two-dimensional or three-
dimensional in nature and are generally due to environmental changes or the effect of 
vegetation.  

This paper presents a finite element, numerical model for the simulation of 
typical two-dimensional volume change problems that are often encountered in 
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engineering practice. The model formulation is based on the general theory of 
unsaturated soil behavior. The soil suction conditions in a soil profile are computed 
through the use of a steady state or a transient unsaturated soil water flow analysis. 
The volume change constitutive relations for the unsaturated soil are formulated 
using two stress state variables; namely, (σ-ua) and (ua-uw), where σ is total normal 
stress, ua is pore-air pressure and uw is pore-water pressure. Darcy’s law is applied to 
the flow of water, where the coefficient of permeability is written as a function of 
soil suction. The volume change model is based on two sets of non-linear constitutive 
relations, (i.e., one for changes in void ratio and the other for changes in water 
content).  While the analysis and example problems are two-dimensional, the theory 
can readily be extended for 3-dimensional analyses. 

The mechanism is explained whereby distress is caused to an engineered 
structure. The distress is generally related to changes in the ground surface flux 
boundary condition or due to the water demands of vegetation such as the root 
system of large trees. The root system of large trees is simulated as a flux boundary 
condition applied to the finite element mesh. In this way, the volume changes in the 
surrounding soil mass can be computed. 

The engineering problems associated with unsaturated soils have proven to be 
complex since the soil properties are non-linear functions of stress state variables. 
The coefficient of permeability and the water storage term for the soil are assumed to 
be functions of soil suction in the analysis of water seepage. The unsaturated soil 
volume change functions are determined from typical one-dimensional oedometer 
results. The elastic modulus functions, E, with respect to changes in net normal 
stress, and H, with respect to changes in matric suction, are calculated from the 
swelling indices, Ct, with respect to changes in net normal stress, and Cm, with 
respect to changes in matric suction, respectively. The Poisson’s ratio is assumed to 
be a constant.  

Solutions for the water flow part of the analysis, as well as the stress-
deformation part of the analysis, are obtained through the use of a general, partial 
differential equation solver, PDEase2D (1996). Three typical two-dimensional 
volume change problems associated with expansive soils are used to demonstrate the 
applicability of the proposed model. The first situation is associated with 
deformations in a soil profile due to water being extracted from a root zone (e.g., the 
roots of trees) within a soil mass. The root zone is simulated as a flux applied to the 
soil mass. The second situation is associated with the settlement of a house induced 
by a line of trees growing close to the house. The third situation is associated with 
the heave of a concrete slab on grade due to loading and water infiltration into the 
soil.  
 
Theory of Volume Change of Unsaturated Soils 
 
Continuity Requirements 
 
The continuity requirement for an unsaturated soil, assuming the soil particles to be 
incompressible, can be stated as follows (Fredlund and Rahardjo, 1993): 
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where: V0 = initial overall volume of soil element, Vv = volume of soil voids, Vw = 
volume of water, and Va = volume of air. 

By using a Cartesian coordinate system and referencing deformation to an 
elemental volume, the total volumetric deformation of an unsaturated soil element, 
dεv, can be written as the sum of the normal strains: 
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where: dεx, dεy, dεz = normal strain components in x,  y, and z-direction, respectively. 
 
Constitutive Relations 
 
Two stress state variables are needed to describe volume change behavior of an 
unsaturated soil (Fredlund and Morgenstern, 1977). These stress state variables are 
net normal stress, (σ-ua), and matric suction, (ua-uw), where σ is total normal stress, 
ua is pore-air pressure and uw is pore-water pressure.  With the use of these two stress 
state variables, volume changes in the soil due to externally applied loads and the 
environmental changes (i.e., change in groundwater table, water uptake by a tree or 
infiltration) can be considered separately.  

Assuming the soil behaves in an incrementally isotropic, linear elastic 
material, the soil structure constitutive relations can be written as follows (Fredlund 
and Rahardjo, 1993): 
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where: εij = components of the strain tensor for the soil structure, σij = components of 
the total stress tensor for the soil structure, σkk = (σ11 + σ22 + σ33), δij = the Kronecker 
delta, µ = Poisson’s ratio, E = modulus of elasticity for the soil structure with respect to 
a change in net normal stress, and H = modulus of elasticity for the soil structure with 
respect to a change in matric suction. 

Assuming water is incompressible, the water phase constitutive relations can 
be formulated in a semi-empirical approach as follows (Fredlund and Rahardjo, 
1993): 
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where: Ew = water volumetric modulus associated with a change in net normal stress 
and Hw = water volumetric modulus associated with a change in matric suction. 

Equations 3 and 4 present the constitutive relationships in elasticity forms. 
These elasticity forms can be used to solve non-linear elastic volume change 
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problems associated with unsaturated soils in two- or three-dimensions. Fredlund and 
Rahardjo (1993) also presented the constitutive relationships for soil structure and 
water phase in compressibility forms as follows: 
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where:  
s
1m = coefficient of volume change with respect to net normal stress [i.e., 3(1-2µ)/E]; 

= coefficient of volume change with respect to matric suction [i.e., 3/H]; s
2m
w
1m = coefficient of water volume change with respect to net normal stress [i.e., 3/Ew];  

= coefficient of water volume change with respect to matric suction [i.e., 1/Hw
2m w]; and 

σmean = mean net normal stress [i.e., (σx+σy+σz)/3]. 

The constitutive relationships for the soil structure and water phase of an 
unsaturated soil can be presented graphically (Fig. 1) by plotting void ratio and 
volumetric water content against the independent stress state variables, (σ-ua) and 
(ua-uw). Coefficients of volume change corresponding to the unloading surface can be 
subscripted with an “s” to represent the word “swelling” (i.e.,  and ). s

s1m s
s2m

The volumetric water content versus matric suction relation is called a soil-
water characteristic curve (SWCC), and the coefficient of water volume change with 
respect to matric suction (i.e., ) is also called a water storage coefficient.  w

2m
The constitutive surface for the soil structure can also be obtained when void 

ratio is plotted with respect to the logarithms of the stress state variables (Fig. 2). The 

 

 

m s
1s

m s
1

ms
2s

ms
2

ε   = 

ε   =  0

v

v

∆V
V

v

0

(u   - u    )a  w

(  - u
   )

σ
 a

m w
1s

mw
1

mw
2s

mw
2

θ   = w
∆V
V

w

0

(u   - u    )a  w

(  - u
   )

σ
 a

θ0

a. Soil structure b. Water phase

Figure 1. Three-dimensional constitutive surfaces for soil structure  
of an unsaturated soil (Fredlund and Rahardjo, 1993) 
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logarithmic plots are essentially linear over a relatively large stress range on the 
extreme planes (i.e., the log(σ-ua) = 0 plane and log(ua-uw) = 0 plane) (Fredlund and 
Rahardjo, 1993). Slopes of the void ratio versus logarithm of net normal stress or 
matric suction lines are called volumetric change indices, Ct or Cm (Fig. 2). These 
indices are used in many methods of one-dimensional heave prediction. The elastic 
modulus function, E is calculated from the volume change index Ct, with respect to 
changes in net normal stress. The elastic modulus function, H is calculated from the 
volume change index Cm, with respect to changes in matric suction.   
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Figure 2. Semi-logarithmic plot of void ratio versus  
net normal stress and matric suction 

 
Saturated/Unsaturated Water Flow 
 
In stress-deformation analyses, displacements are calculated from changes in stress 
states (i.e., changes in net normal stress and matric suction) and the elastic moduli. 
Matric suction profile is necessary to describe the initial and final stress conditions in 
soils. If the pore-air pressure is assumed to be atmospheric, the distribution of pore-
water pressure is equivalent to the matric suction distribution. The prediction of pore-
water pressure must take into consideration in response to changes in the surface flux 
boundary conditions (i.e., infiltration, evaporation, and evapotranspiration) and the 
fluctuation of the ground-water tables. The pore-water pressure distribution within 
the soil can be estimated by performing a saturated/unsaturated seepage analysis. 

The governing partial differential equation for water flow through a 
heterogeneous, anisotropic, saturated/unsaturated soil can be derived by satisfying 
conservation of mass for a representative elemental volume, assuming that flow 
follows Darcy’s law with a non-linear coefficient of permeability. If it is assumed 
that the total stress remains constant during a transient process and that pore-air 
pressure is atmospheric, the differential equation can be written as follows for the 
two-dimensional transient case: 
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where: h = total head (i.e., pore-water pressure head plus elevation head); kx and ky = 
coefficient of permeability of the soil in the x- and y-direction, respectively; γw = the 
unit weight of water (i.e., 9.81 kN/m3), = the slope of the soil water characteristic 
curve. Both the coefficient of permeability and coefficient of water storage are 
dependent on stress states in soils (i.e., net normal stress and matric suction). However, 
these coefficients of an unsaturated soil are predominantly a function of the matric 
suction.  

w
2m

The water storage indicates the amount of water taken or released by the soil 
as a result of a change in the pore-water pressure and can be represented by the slope 
of the soil-water characteristic curve. Therefore, the water storage function is 
obtained by differentiating the soil-water characteristic curve with respect to matric 
suction. Numerous equations have been proposed to simulate the soil-water 
characteristic curve (Gardner, 1958; van Genuchten, 1980; Fredlund and Xing, 
1994). The soil-water characteristic curve described in the present study is limited to 
the Fredlund and Xing (1994) equation. The Fredlund and Xing (1994) equation is 
shown below: 
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where: C(ψ) = a correction factor for high soil suctions, defined as: 
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where:  ψ = soil suction (kPa), e = natural log base, 2.71828..., θs = volumetric water 
content at saturation, ψr  = total suction corresponding to the residual water content θr, a 
= a soil parameter which is related to the air entry value of the soil (kPa),  n = a soil 
parameter which controls the slope at the inflection point in the soil-water characteristic 
curve, and m = a soil parameter which is related to the residual water content of the soil. 

There are many permeability functions that have been proposed to represent 
the permeability function of an unsaturated soil (e.g., Gardner, 1958; Phillip, 1986; 
Fredlund and Xing, 1994; Leong and Rahardjo, 1997). These equations involve 
finding best-fit parameters, which produces a curve that fits the measured data. The 
equation proposed by Leong and Rahardjo (1997) is used to describe the 
permeability function for transient water flow analysis in this paper. Leong and 
Rahardjo (1997) illustrated that the coefficient of permeability is a power function of 
volumetric water content. Using the Fredlund and Xing (1994) equation with C(ψ ) = 
1, the permeability function was shown to take the following form: 
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The parameter p can be determined by using a curve fitting of the coefficient 
of permeability data. The slope of soil-water characteristic curve (i.e., coefficient of 
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water storage) is obtained by differentiating the Fredlund and Xing (1994) equation 
(Fredlund, 1995).  The water storage function is shown below for correction factor 
C(ψ ) = 1: 
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where: e = 2.718 (i.e., natural log base). 

The transient water flow equation (Eq. 7) along with the equation of a soil-
water characteristic curve (Eq. 8) and a permeability function (Eq. 9), can be used to 
predict pore-water pressure profiles (i.e., suction profiles) at different times during a 
seepage process. The suction profiles can then be used to compute the suction change 
for the stress-deformation analysis. The deformations due to changes in suction 
during any time period can then be predicted by specifying the initial and final soil 
suction profile. 

For steady state seepage, only the coefficient of permeability is required 
because the time dependent term in Eq. (7) disappears and the storage function 
disappears. Gardner’s equation(1958) is used for steady-state flow analyses. 
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where: ψ  = soil suction (kPa), ks = coefficient of permeability at saturation, a = 
constant inversely proportional to the breaking point of the function, and n = constant 
related to the slope of the function. 

The permeability function (Eq. 11) can be used to predict the pore-water 
pressure distribution (i.e., suction distribution) at equilibrium in the soil under 
specified boundary conditions. The suction profile then can be used to compute 
suction changes for the stress-deformation analysis to predict deformations. 

 
Stress-Deformation 
 
Equations of equilibrium for the soil structure of an unsaturated soil are: 

σij,j + bi = 0  (12) 

where: σij = components of the net total stress tensor, and bi = components of the body 
force vector. 

The partial differential equations for the soil structure can be derived from 
constitutive equations (Eq. 3) and the force equilibrium equations (Eq. 12). The 
governing partial differential equations in term of displacements in x- and y-direction 
(i.e., u and v) for plane strain loading (dεz = 0) are as follows: 
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where: ( )( )µµ +−
=

121
Ec ( )µ+

=
12
E, G , ρ = density of the soil, and g = acceleration 

due to gravity. 

Equations 13 and 14 are non-linear since the elastic moduli are functions of 
the stress state variables. The elastic moduli, E and H, can be calculated from the 
volume change indices, initial void ratio and Poisson’s ratio as follows (Hung and 
Fredlund, 2000): 
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where: nt = coefficient that relates net normal stress with elastic modulus E, nm = 
coefficient that relate matric suction with elastic modulus H, σave = (σx+σy)/2, (save-
ua)ave = average of the initial and final net normal stress for an increment, and (ua-uw)ave 
= average of the initial and final matric suction for an increment. 

Equations 13 and 14 can be used to compute the displacements in horizontal 
and vertical directions under an applied load or due to changes in matric suction. 
These equations can also be used to compute the induced stresses in the soil under an 
applied load. Because of soil property non-linearity, an incremental procedure is used 
to obtain the solution of these equations. In the incremental procedure, the values of 
elastic moduli E and H are assumed to be unchanged within each stress and strain 
increment, but are changed from one loading increment to another. 
 
Example Problems 
 
Three typical volume change problems that are often encountered in engineering 
practice are analyzed. The matric suction conditions in the soil mass were first 
predicted by performing a saturated/unsaturated water flow analysis. Then the 
deformations in soils caused by changing matric suction were predicted by 
performing a stress-deformation analysis. Both seepage and stress-deformation 
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analyses are performed using a Partial Differential Equation Solver, PDEase2D. 
 
Example 1: Influence of Trees to Surrounding Soil 
 
The first example problem is associated with the deformation in soil near a line of 
trees. It is assumed that the trees are planted in a line at every 5 m. The example 
considers a 10 m thick layer of clay soil. The coefficient of permeability of the soil is 
described using Gardner's (1958) equation with a saturated coefficient of 
permeability equal to 5.79x10-8 m/s (i.e., 5 mm/day), parameters a and n equal to 
0.001 and 2, respectively. The initial void ratio of the soil is equal to 1.0, and the 
volume change index with respect to matric suction, Cm is equal to 0.2. 

The initial matric suction is taken to be hydrostatic with an unchanged ground 
water table at the 15 m depth. This represent the water content conditions in soils in 
the winter when water uptake by the trees is low. It is then assumed that one tree will 
extract 0.3 m3 of water per day in summer and the steady state condition is attained. 
The value of 0.25 to 0.5 m3/day was suggested by Perpich et. al. (1965). The water 
uptake zone for the trees is from the 1 m to 3 m depth, with uptake rate decreasing 
linearly with depth. This pattern of tree root water uptake was suggested by de Jong 
(2000). 

Deformations in the soil profile due to water uptake by trees (from initial to 
final matric suction state) were predicted. The elastic modulus function (Fig. 3) with 
respect to matric suction for the soil was computed using a given initial void ratio, 
volume change index, and assumed Poisson's ratio equal to 0.3. The function can be 
calculated from Eq. 16 as follows: 

H = 59.9(ua-uw)ave  (17) 

The initial and final matric suction conditions used to predict deformations in 
the stress-deformation analysis are obtained from the steady state seepage analysis 
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Figure 3. Permeability function, k and elastic modulus function, H, Example 1 
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using the coefficient of permeability function shown in Fig. 3. For boundary 
conditions for initial matric suction condition, a -15 m total head was specified at the 
lower boundary and a zero total head was specified at other boundaries. For final 
matric suction conditions, a -15 m total head was specified at the lower boundary, a 
boundary outflow value was specified along the left side of the soil domain at a depth 
from 1 m to 3 m and zero total head was specified at other boundaries. The outflow 
value decrease linearly from 15 mm/day at the 1 m depth to zero mm/day at the 3 m 
depth. This boundary condition represents 0.3 m3/day of water being extracted by 
one tree from the soil (i.e., 2 sides x 2 m depth x 5 m wide x 15 mm/day  = 0.3 
m3/day). 

The matric suction distributions in the soil at equilibrium are shown in Figs. 4 
and 5 for initial and final conditions, respectively. The initial matric suction varied 
from 147 kPa at ground surface to 49 kPa at 10 m depth. The final matric suction 
varied from 260 kPa at tree root to 49 kPa at 10 m depth. The matric suction change 
was a maximum at the tree root level and decreased with distance from the tree.  

The deformations in the soil profile due to water uptake by tree roots was 
then predicted through the use of the stress-deformation analysis. The boundary 
condition for the stress-deformation analysis involved having the soil free to move in 
the vertical direction and fixed in horizontal direction at the left and right sides of the 
domain. The lower boundary was fixed in both directions. 

Figure 6 presents contours of vertical displacement in the soil for this 
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Figure 4. Initial matric suction (kPa) profile, Example 1 
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Figure 5. Final matric suction (kPa) profile, Example 1 
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example, with the volume change index with respect to matric suction equal to 0.2 
and the tree-root uptake rate equal to 0.3 m3/day per tree. The ground movements at 
various depths are shown in Fig. 7. It can be seen that the movements near the 
ground surface were quite large within a horizontal distance of about 4 m from the 
trees. The movements decreased rapidly with distance until at 12 m. The 
displacements also decreased rapidly with depth. The predicted displacements shown 
in Fig. 7 have the same pattern of displacements as these monitored by Bozozuk and 
Burn (1960).  At ground surface, a value of settlement of 85 mm at tree location 
decreased to 40 mm at 8 m from the trees. At 4 m from the trees, a settlement of 65 
mm at ground surface decreased to 40 mm at the 3 m depth, and about 20 mm at the 
5 m depth.  

The example was also analyzed for the case where the water uptake rate was 
0.3 m3/day and the volume change index varied with overburden pressure in soils 
(i.e., volume change index decreases linearly from 0.2 at ground surface to 0.05 at 10 
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Figure 6. Contours of vertical displacement (mm), Example 1 
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Figure 7. Variation with depth of ground movements  
near a line of trees, Example 1 
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m depth). Contours of vertical displacement are presented in Fig. 8 for this case. 
Most of displacements take place near ground surface. 

 Figure 9 presents contours of settlement for the case with a volume change 
index equal to 0.2 and a water uptake rate equal to 0.5 m3/day. About 12% more 
settlement is obtained at tree location in comparison with the case when the water 
uptake rate was 0.3 m3/day (i.e., (102 - 85)/85 = 12%). 
 
Example 2: Influence of a Line of Trees to a House Footing 
 
Example 2 simulates the settlement of a house induced by a line of trees growing 
close to the house. This example is illustrated in Fig. 10. The house foundation is 
placed at a 2 m depth in a clay soil layer that is 10 m thick. The line of trees is 4 m 
from the house. Water uptake rate of the trees is 0.5 m3/day per tree and the water 
uptake zone is from 1 m to 3 m depth. It is assumed that the ground water table is 
unchanged at 15 m below ground surface. A layer of 0.3 m thick of concrete with 
elastic modulus of 100,000 kPa is used to describe the foundation and basement 
walls of the house. Soil properties are the same as those used in Example 1 (Fig. 3). 
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Figure 8. Contours of vertical displacement (mm) when volume change 
index varied from 0.2 at surface to 0.05 at the 10 m depth, Example 1 
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Figure 9. Contours of vertical displacement (mm) when water uptake  
rate was 0.5 m3/day and volume change index equaled to 0.2, Example 1 
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Matric suction conditions in the soil profile were obtained through steady 
state unsaturated seepage analyses. The initial matric suction profile is the same as 
that shown in Fig. 4. The final matric suction profile is shown in Fig. 11. Final matric 
suction varied from 409 kPa at tree root to 49 kPa at lower boundary of the soil 
domain. The contours of changes in matric suction are presented in Fig. 12. The 
closer to the tree, the more change in suction is observed. Figure 12 also showed a 
similar pattern of moisture deficit near trees presented in Biddle (1983). The results 
of stress-deformation analysis are shown in Figs. 13 and 14 as contours of horizontal 
displacement and contours of vertical displacement. A maximum foundation 
settlement of 80 mm and minimum settlement of 25 mm was observed. A maximum 
settlement in the soil profile took place at tree location and decreased with horizontal 
distance and depth.  
 

e   = 1.0
C   = 0.2

 = 0.3
k  = 5 mm/day
µ

Ground-water table -15 m

Root uptake 0.5 m  /day3

0
m

s

 
 

Figure 10. Illustration of Example 2 
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Figure 11. Contours of final matric suction (kPa), Example 2 
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Figure 12. Contours of changes in matric suction (kPa), Example 2 
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Figure 13. Contours of horizontal displacement (mm), Example 2 
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Figure 14. Contours of vertical displacement (mm), Example 2 
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Example 3: Influence of Ground Surface Flux to a Concrete Floor Slab 
 
This example is presented to show a comprehensive volume change problem in an 
unsaturated soil. This example considers the deformations in a soil profile under a 
concrete floor slab due to applied load and changes in matric suction (i.e., water 
infiltration into the soil profile from surface). The deformations will be predicted for 
various predetermined elapsed times. The problem to be analyzed is illustrated in 
Fig. 15. A concrete slab, 0.3 m thick and 8 m wide is placed on a 5 m thick layer of 
swelling clay. All the soil properties to be used in the analysis are presented in Figs. 
15 and 16. The soil has an initial suction of 700 kPa throughout the profile. The 
applied load on the slab, including its weight is 10 kPa. The right side of the slab is 
covered with an impermeable flexible layer. The grass at the left side is watered with 
the flux of 5.79x10-9 m/s. 

The soil-water characteristic curve is described using the Fredlund and Xing 
(1994) equation, with the parameters a equal to 100 kPa, n equals 1.5 and m equals 1. 
The permeability function is described using the equation proposed by Leong and 
Rahardjo (1997) based on the Fredlund and Xing (1994) function for the soil-water 
characteristic curve with p equal to 1. Because the parameter p is equal to 1, the soil-
water characteristic curve and the permeability function have the same shape and are 
shown in Fig. 16. The concrete slab has elastic modulus with respect to net normal 
stress equal to 1 MPa. 

The elastic modulus function with respect to net normal stress, E, can be 
calculated from the given compressive index with respect to net normal stress, initial 
void ratio and assumed Poisson’s ratio using Eq. 15 and written as follows: 

aveaave )u(89.12E −= σ   (18) 

The elastic modulus function with respect to matric suction, H, is calculated 
using Eq. 16 for the soil with given initial void ratio, swelling index with respect to 
matric suction, and assumed Poisson’s ratio. This function can be written as follows: 

avewa uuH )(20.184 −=   (19) 
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Figure 15. Illustration of Example 3 
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The matric suction conditions in the soil at various elapsed times can be 
predicted by performing an unsaturated transient seepage analysis. For the transient 
seepage analysis, a boundary flow value of 5.79x10-9 m/s is specified along the 
uncovered surface and zero flux is specified at the other boundary sides. The initial 
matric suction is equal to 700 kPa. Matric suction profile at 400 days of constant 
infiltration is presented in Fig. 17 as a typical matric suction distribution in soils.  

Deformation in the soil mass due to loading can be assumed to respond 
immediately, while the deformation due to wetting is a time dependent process. 
Therefore, the stress-deformations due to loading and due to wetting need to be 
analyzed independently. A stress-strain analysis is performed in six stages. One stage 
is for changes in net normal stress and the other five are for changes in suction. In the 
first stage, the deformation due to loading (i.e., change in net normal stress) is 
modeled. The second stage is carried out to determine the deformation due to 
changes in matric suction after 100 days of watering the grass. In this stage, the 
initial matric suction profile has a constant value of 700 kPa, and the final matric 
suction profile is computed from the water flow analysis, at the first elapsed time of 
100 days. The third stage gives the deformation due to changes in suction in the next 
100 days (i.e., from 100th to 200th day). The fourth, fifth and sixth stages are for the 
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Figure 16. Permeability function and SWCC, Example 3 
 

 
 

Figure 17. Matric suction (kPa) profile at day 400, Example 3 
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time periods from 200th to 300th day, 300th to 400th day, and 400th to 450th day, 
respectively.  

The boundary conditions are specified for the stress-deformation analysis as 
follows. At the left and right sides of the domain, the soil is free to move in the 
vertical direction while it is fixed in the horizontal direction. The lower boundary is 
fixed in both directions.  

The initial vertical total stress is calculated from total stress theory and the 
initial horizontal stress is calculated using a coefficient of earth pressure at rest, K0, 
equal to 0.67.  

The vertical displacement and horizontal displacement due to wetting for 
each stage of the analysis are predicted. The cumulative vertical displacements at the 
surface are presented in Fig. 18 for each stage. Figures showing distribution of 
horizontal displacements can not be presented due to the limited length of the paper. 
The maximum calculated heave increases from 20 mm during the first 100 days to 45 
mm in the stage from “Day 300” to “Day 400” of infiltration, and in the last stage 
(i.e., in the last 50 days), a maximum heave of 46 mm was predicted. Small 
horizontal displacements were observed during the infiltration (i.e., maximum of 1.5 
mm for the first 100 days and 5 mm for the last 50 days).  

Figure 19 presents the cumulative vertical displacements below the concrete 
slab. The vertical displacements caused by loading are presented by the contours in 
Fig. 20. A maximum settlement of 65 mm was predicted for the concrete slab.  

Total heave due to wetting for 450 days is presented in Fig. 21. As much as 
155 mm of heave was predicted at the surface of the exposed area (grass portion), 
and 90 mm of heave was predicted at the covered portion. The differential heave of 
the concrete slab was about 30 mm. The horizontal displacements take place only in 
the grassed portion, where 10 mm of horizontal displacements was predicted. The 
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Figure 18. Cumulative vertical displacement at surface at various times, Example 3 
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differential heaves predicted depend on the rate of infiltration; a lower rates of 
infiltration results in lower differential heave.  

 
 

Figure 19. Cumulative vertical displacements versus depth 
below the slab at various times, Example 3 

 

 
Figure 20. Contours of vertical displacement due to loading (mm), Example 3 

Figure 22 presents total vertical displacements due to the combined effects of 
loading and wetting in 450 days. There was about 155 mm of heave in the grassed 
portion, about 40 mm of heave below the concrete slab and about 90 mm of heave in 
the cover area. Maximum horizontal displacements of 20 mm took place at about 1.5 
m depth below the end of the concrete slab. 

 
Conclusion 
 
A method of volume change prediction based on the general theory of unsaturated 
soil behavior have been used to study the influence of water uptake by tree roots and 
water infiltration to surrounding soils and nearby structures. Results of the analyses 
appear to be reasonable and consistent with measured values. The results show that 
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magnitude of deformation of structures and soils close to the trees decreased with 
vertical and horizontal distance from trees, and with decreasing of water uptake rates.  
It is possible to combine unsaturated soil theory for seepage and stress analysis to 
study the influence of vegetation and environmental conditions on light engineered 
structures. 
 
 

 
 

Figure 21. Contours of vertical displacement due to wetting 
after 450 days (mm), Example 3 

 
 

 
 

Figure 22. Contours of vertical displacement due to loading 
and wetting after 450 days (mm), Example 3 
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Figure 23. Distribution of deformation vectors due to loading 

and wetting after 450 days (mm), Example 3 
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